
GAPfm: Optimal Top-N Recommendations for Graded
Relevance Domains ∗

Yue Shi
Delft University of Technology

y.shi@tudelft.nl

Alexandros Karatzoglou
Telefonica Research

alexk@tid.es

Linas Baltrunas
Telefonica Research

linas@tid.es

Martha Larson
Delft University of Technology

m.a.larson@tudelft.nl

Alan Hanjalic
Delft University of Technology

a.hanjalic@tudelft.nl

ABSTRACT
Recommender systems are frequently used in domains in
which users express their preferences in the form of graded
judgments, such as ratings. If accurate top-N recommenda-
tion lists are to be produced for such graded relevance do-
mains, it is critical to generate a ranked list of recommended
items directly rather than predicting ratings. Current tech-
niques choose one of two sub-optimal approaches: either
they optimize for a binary metric such as Average Precision,
which discards information on relevance grades, or they opti-
mize for Normalized Discounted Cumulative Gain (NDCG),
which ignores the dependence of an item’s contribution on
the relevance of more highly ranked items.

In this paper, we address the shortcomings of existing ap-
proaches by proposing the Graded Average Precision fac-
tor model (GAPfm), a latent factor model that is partic-
ularly suited to the problem of top-N recommendation in
domains with graded relevance data. The model optimizes
for Graded Average Precision, a metric that has been pro-
posed recently for assessing the quality of ranked results list
for graded relevance. GAPfm learns a latent factor model
by directly optimizing a smoothed approximation of GAP.
GAPfm’s advantages are twofold: it maintains full informa-
tion about graded relevance and also addresses the limita-
tions of models that optimize NDCG. Experimental results
show that GAPfm achieves substantial improvements on the
top-N recommendation task, compared to several state-of-
the-art approaches. In order to ensure that GAPfm is able
to scale to very large data sets, we propose a fast learn-
ing algorithm that uses an adaptive item selection strategy.
A final experiment shows that GAPfm is useful not only
for generating recommendation lists, but also for ranking a
given list of rated items.

Keywords
Collaborative filtering, graded average precision, latent factor

model, recommender systems, top-n recommendation

∗A short version of this manuscript is published at CIKM
2013.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Recommendation technology has been widely adopted by

many online services in recent years, to help relieve users
of massive information overload [1]. Collaborative filtering
(CF) is one of the most popular and successful techniques
for recommender systems [9] and is deployed, for example,
by Amazon and Netflix. The core idea behind CF is that
users whose past interests were similar will also share com-
mon interests in future. Users’ interests are inferred from
patterns of interaction, either explicit or implicit, of users
with items. In a typical case involving explicit feedback,
users are asked/allowed to explicitly rate items, using a pre-
defined rating scale (graded relevance), e.g., 1-5 stars on the
Netflix movie recommendation site. A higher grade indi-
cates stronger preference for the item, reflecting a higher
relevance of the item with respect to the user. In a typi-
cal case involving implicit feedback [15], users interact with
items by downloading or purchasing, and their preferences
are deduced from the resulting patterns. In this paper we
propose a new CF model for the case of graded relevance
data.

One way to measure the fit of a learned model for graded
relevance data (e.g., ratings) is to use a metric such as Root-
Mean-Square Error. This metric was adopted as the eval-
uation metric in the Netflix Prize contest1. However, it is
now widely recognized that recommendation approaches op-
timized to minimize the error rate usually achieve poor per-
formance on the top-N recommendation task [8, 11]. In
practice, users focus their attention on only a small num-
ber of recommendations, effectively ignoring all but a short
list of N recommended items. For this reason, it is more
useful to focus the recommendation model on making this
short list of top-N items as relevant as possible, rather than
on accurately predicting ratings of non-relevant items. De-
spite the different nature of the underlying data (graded v.s.
binary) the ultimate objective of CF models in all cases is
the same, i.e., to generate a top-N recommendation list of
relevant items to individual users. This task is essentially a
ranking task, i.e., ranking items according to their relevance
to the user. Consequently, CF models that optimize for a
ranking metric are particularly well suited to address it.

Various models use learning to rank [22] techniques to op-
timize binary relevance ranking metrics. For example, sev-
eral CF models [25, 28, 29] compute near optimal ranked
lists with respect to the Area Under the Curve (AUC), Av-

1http://www.netflixprize.com/

ar
X

iv
:1

30
7.

38
55

v1
 [

cs
.I

R
]

 1
5

Ju
l 2

01
3

erage Precision (AP) [24] and Reciprocal Rank [34] metrics.
However, metrics that are defined to handle binary relevance
data are not directly suitable for graded relevance data. In
order to apply binary metrics, and CF methods that opti-
mize for these metrics, to graded relevance data, it is nec-
essary to convert the data to binary relevance data. This
conversion is generally accomplished by imposing a thresh-
old (e.g., defining rating levels 1-3 as non-relevant and 4-5
as relevant). This process has two major drawbacks: 1) we
lose grading information among the rated items, e.g., items
rated with a 5 are more relevant than items rated with a 4.
This information is crucial in building precise models. 2) the
choice of the threshold relevance is arbitrary and will have
an impact on the performance of different recommendation
approaches.

A well-known metric in the area of information retrieval
(IR) is Normalized Discounted Cumulative Gain (NDCG) [17],
which can be used to measure the performance of ranked re-
sults with graded relevance and is often used for evaluating
recommender systems [4, 20, 21, 33, 36]. NDCG is depen-
dent on both the grades and the positions of the items in
the ranked list. However, NDCG is a so-called“non-cascade”
metric. Under “cascade metrics”, such as Average precision
and Reciprocal Rank, the contribution of a given item has
a dependence on the relevance of higher ranked items. In-
stead, NDCG assumes independence between the items in
the ranked list, i.e., each item contributes to the quality of
the ranked list solely based on its own grade and position,
while ignoring the impact of items that are ranked above it.
The“non-cascade”nature of NDCG, has recently drawn crit-
icism from authors who point out the advantages of cascade
metrics [6, 26].

Graded Average Precision (GAP) [26] has been proposed
as a generalized version of Average Precision in the use sce-
nario with graded relevance data. GAP, being similar to
Average Precision, reflects the overall quality of the top-N
ranked items. Moreover, it inherits all the desirable prop-
erties of AP: top-heavy bias, high informativeness, elegant
probabilistic interpretation, and solid underlying theoretical
basis [26]. In this paper, we propose a new CF approach,
i.e., a latent factor model for Graded Average Precision
(GAPfm), that learns latent factors of users and items so
as to directly optimizes GAP of top-N recommendations.
The contributions in this paper can be summarized as:

• We propose a novel CF approach that directly opti-
mizes GAP. We show that GAPfm outperforms state-
of-the-art methods for various evaluation metrics in-
cluding GAP, Precision and NDCG.

• We conduct a theoretical analysis of the smoothed ap-
proximation of GAP and support its validity.

• We provide a learning algorithm that scales linearly
with the number of observed grades in the dataset.
Moreover, we further exploit properties of GAP and
provide a sub-linear complexity learning algorithm that
is suitable for large data sets.

The reminder of the paper is organized as follows: in Sec-
tion 2 we discuss previous research contributions that are re-
lated to our approach proposed in this paper. Then, in Sec-
tion 3, we introduce the notation and terminology adopted
throughout the paper, after which, in Section 4, we present
the details of GAPfm. The experimental evaluation is pre-
sented in Section 5. Finally, Section 6 summarizes our con-
tributions and discusses future work.

2. RELATED WORK
The approach proposed in this paper is rooted in the re-

search areas of collaborative filtering and learning to rank.
In the following, we discuss related contributions in each of
the two areas, and position our work with respect to them.

Collaborative Filtering. A large portion of recent CF
approaches tries to address the rating prediction problem,
as defined in the Netflix Prize contest. CF approaches can
categorized broadly into two categories: memory-based and
model-based [1]. Memory-based approaches rely on the sim-
ilarities between users or items, and generate rating predic-
tions by aggregating preference data over similar users (user-
based) [12] or similar items (item-based) [27]. Model-based
approaches learn a prediction model based on a set of train-
ing data, and then use the prediction model to generate
recommendations for individual users [2, 13]. Latent fac-
tor models (or more specifically, matrix factorization tech-
niques) have attracted significant research attention, due to
their superior performance on the rating prediction problem,
as witnessed during the Netflix Prize contest [18, 19]. The
methods developed to attack the Netflix Prize were highly
effective for the rating prediction task, but have turned out
to have relatively poor performance on the top-N recommen-
dation task [8].

A few contributions have been proposed specifically to
address the ranking problem in CF. Bayesian personalized
ranking (BPR) [25] and Collaborative Less-is-More Filtering
(CLiMF) [29] seek to improve top-N recommendation by di-
rectly optimize binary relevance measures, i.e., Area Under
the Curve (AUC) in BPR and Reciprocal Rank in CLiMF.
In a similar spirit, TFMAP [28] directly optimizes Average
Precision for context-aware recommendations. All of these
methods use binary implicit-feedback data. However, as dis-
cussed in Section 1, these methods are not well-suited for
graded relevance datasets, since they are not able to fully
exploit the information encoded in the grade levels.

Research that deals with the ranking problem for cases in-
volving graded relevance data includes EigenRank [20] and
probabilistic latent preference analysis [21], which exploit
pair-wise comparisons between the rated items. Collabora-
tive competitive filtering [39] has further advanced the per-
formance of top-N recommendation by imposing local com-
petition, i.e., constraining items that users have seen but not
rated to be less preferred that items both seen and rated.
However, none of these methods are designed to optimize
for any specific ranking/evaluation measure.

To our knowledge, the only existing CF approach, that di-
rectly optimizes a graded evaluation measure is CofiRank [36],
which minimizes a convex upper bound of the NDCG loss
through matrix factorization. Some of the latest contribu-
tions aim at enhancing the performance of CofiRank and
boosting the NDCG score of the ranking results [4, 33].
These approaches are often referred to as collaborative rank-
ing, and are evaluated by their performance on ranking graded
items. Note that these approaches solve a different problem.
Instead of addressing the top-N recommendation task, they
rank a list of rated items that has already been given, i.e.,
pre-specified. As mentioned in Section 1, even results that
are ranked optimally in terms of NDCG may still yield sub-
optimal top-N recommendations. The new approach intro-
duced by this paper, GAPfm, directly optimizes a recently
proposed cascade metric GAP. In our experimental evalua-
tion, we demonstrate that GAPfm outperforms CoFiRank

with respect to a range of conventional top-N evaluation
metrics.

Learning to Rank. The task of learning to rank is to
learn a ranking function that is used to rank documents for
given queries [22]. Inspired by the analogy between query-
document relations in IR and user-item relations in recom-
mender systems, many CF methods were proposed recently
[4, 14, 25, 28, 29, 33, 36]. Our work in this paper also falls
into this category, and in particular, it is closely related to
one sub-area of learning to rank, i.e., direct optimization of
evaluation metrics.

Note that the key challenge of directly optimizing evalua-
tion metrics lies in the non-smoothness [5] of these measures.
Specifically, these metrics are defined on the rankings and
the grades (in the case of graded relevance data) of docu-
ments/items in a list, which are indirectly determined by
the parameters of the ranking function. Research contribu-
tions have been made to directly optimize evaluation metrics
by exploiting structured estimation techniques [32, 38] that
minimize convex upper bounds of loss functions based on
evaluation measures, e.g., SVM-MAP [40] and AdaRank [37].
In addition, SoftRank [31] and its extensions [7] were pro-
posed to use smoothed versions of evaluation measures, which
can then be directly optimized. Our work can be considered
part of this research direction, since our proposed approach
optimizes a smoothed version of GAP. The difference with
previous work is that we integrate GAP optimization with
latent factor models for learning optimal top-N recommen-
dation in the graded relevance domains. We also contribute
a learning algorithm that guarantees that the proposed ap-
proach is highly scalable.

3. NOTATION AND TERMINOLOGY
We denote the graded relevance data from M users to N

items as a matrix YM×N , in which the entry ymi denotes
the grade given by user m to item i. Note that we have
ymi ∈ {1, 2, . . . , ymax}, in which ymax is the highest grade.
Note also that ymi = 0 indicates that user m’s preference
for item m is unknown. |Y | denotes the number of nonzero
entries in Y . In addition, Imi serves as an indicator function
that is equal to 1, if ymi > 0, and 0 otherwise. We use UD×M

to denote the latent factors of M users, and in particular Um

denotes aD-dimensional (column) vector that represents the
latent factors for userm. Similarly, V D×N denotes the latent
factors of N items and Vi represents the latent factors of
item i. Note that the latent factors in U and V are model
parameters that need to be estimated from the data (i.e.,
a training set). The relevance between user m and item i
is predicted by the latent factor model, i.e., using the inner
product of Um and Vi, as below:

fmi = 〈Um, Vi〉 =

D∑
d=1

UmdVid (1)

To produce a ranked list of items for a user m all items
are scored using Eq. (1) and ranked according to the scores.
In the following, we use Rmi to denote the rank position
of item i for user m, according to the descending order of
predicted relevances of all items to the user. For example,
if the predicted relevance of item i is higher than that of all
the other items for user m, i.e., if fmi > fmj , j = 1, 2, . . . , N
and j 6= i, then Rmi = 1.

Taking into account both the original definition of GAP

in [26] and the notation introduced above, we can rewrite
the formulation of GAP for a ranked item list recommended
for user m as follows:

GAPm =
1

Zm

N∑
i=1

Imi

Rmi

N∑
j=1

ImjI(Rmj ≤ Rmi)

(
I(ymi < ymj)

ymi∑
l=1

δl + I(ymj ≤ ymi)

ymj∑
l=1

δl
)

(2)

where I(·) is an indicator function, which is equal to 1 if the
condition is true, and otherwise 0. δl denotes the thresh-
olding probability [26] that the user sets as a threshold of
relevance at grade l, i.e., regarding items with grades equal
or larger than l as relevant ones, and items with grades lower
than l as irrelevant ones. Zm is a constant normalizing co-
efficient for user m, as defined below:

Zm =

ymax∑
l=1

nml

l∑
k=1

δk (3)

where nml denotes the number of items rated with grade l
by user m.

For notational convenience in the rest of the paper, we
substitute the last term of the parentheses in Eq. (2), as
shown below:

βmij := I(ymi < ymj)

ymi∑
l=1

δl + I(ymj ≤ ymi)

ymj∑
l=1

δl (4)

We assume that each grade l is an integer ranging from 1 to
ymax, since usually a non-integer grade scale can be trans-
formed to an integer grade scale by multiplying by a constant
factor, e.g., the scale of 1 to 5 stars with half star increment
can be transformed to the scale of 1 to 10 stars by multiply-
ing factor 2. As suggested in [26], the value of δl for each
grade needs to be empirically tuned according to the specific
use cases. In this paper, we adopt an exponential mapping
function that maps the grade l to the thresholding proba-
bility δl, as shown in Eq. (5). Note that other expressions
for the definition of δl can be also used, without influencing
the main results on the optimization of GAP, as presented
in the next section.

δl =

{
2l−1

2ymax , ymax > 1
1, ymax = 1

(5)

Using the introduced terminology, the research problem
investigated in this paper can be stated as: Given a top-N
recommendation scenario involving graded relevance data Y ,
learn latent factors of users and items, U and V , through the
direct optimization of GAP as in Eq. (2) across all the users
and items.

4. GAPfm
In this section, we present the details of the proposed

recommendation approach, GAPfm. We first introduce a
smoothed version of GAP, for which we can use to optimize
a latent factor model. Further, we analyze the complexity
of the learning algorithm, and propose an adaptive selection
strategy that achieves constant complexity for GAPfm.

4.1 Smoothed Graded Average Precision
As shown in Eq. (2), GAP depends on the rankings of the

items in the recommendation lists. However, the rankings of

the items are not smooth with respect to the predicted user-
item relevance, and thus, GAP results in a non-smooth func-
tion with respect to the latent factors of users and items, i.e.,
U and V . Therefore, standard optimization methods cannot
be used to maximize the objective function as in Eq. (2).
In this work, we exploit core ideas from the literature on
learning to rank [7] and recent work that successfully used
smoothed approximations of evaluation metrics for CF with
implicit feedback data [28, 29]. We approximate the rank-
based terms in the GAP metric with smoothed functions
with respect to the model parameters (i.e., the latent fac-
tors of users and items). Specifically, the rank-based terms
1/Rmi and I(Rmj ≤ Rmi) in Eq. (2) are approximated by
smoothed functions with respect to the model parameters U
and V , as shown below:

I(Rmj ≤ Rmi) ≈ g(fmj − fmi) (6)

1

Rmi
≈ g(fmi) (7)

where g(x) is a logistic function, i.e., g(x) = 1/(1 + e−x).
The basic assumption of the approximation in Eq. (6) is
validated in [7], i.e., the condition of item j being ranked
higher than item i is more likely to be satisfied, if item j has
relatively higher relevance score than item i. However, the
approximation in Eq. (7) proposed in [28, 29] is heuristic,
and the rationale of this approximation has not been well
justified. In this paper, we present our theoretical analysis
of the approximation in Eq. (7) and support its validity. The
detail of the validation is given in Appendix A.

We attain a smoothed version of GAPm by substitut-
ing the approximations introduced in Eq. (6) and (7) into
Eq. (2), as shown below:

GAPm ≈
N∑
i=1

Imig(fmi)

N∑
j=1

Imjβmijg(fm(j−i)) (8)

Note that for notation convenience, we make use of the sub-
stitution fm(j−i) := 〈Um, Vj〉−〈Um, Vi〉. In Eq. (8), we drop
the coefficient 1/Zm, which is independent of latent factors,
and thus, has no influence on the optimization of GAPm.
Taking into account GAP of all M users (i.e., the average
GAP across all the users) and the regularization for the la-
tent factors, we obtain the objective function of GAPfm as
below:

F (U, V) =
1

M

M∑
m=1

N∑
i=1

Imig(fmi)
N∑

j=1

Imjβmijg(fm(j−i))

− λ

2
(‖U‖2 + ‖V ‖2) (9)

‖U‖ and ‖V ‖ are Frobenius norms of U and V , and λ is
the parameter that controls the magnitude of regularization.
Note that the constant coefficient 1/M is also dropped in
the following, since it has no influence on the optimization
of F (U, V).

4.2 Optimization
Since the objective function in Eq. (9) is smooth over

the model parameters U and V , we can optimize it using
stochastic gradient ascent. In each iteration, we optimize
F (Um, V) for user m independently of all the other users.
The gradients of F (Um, V) with respect to user m and item

i can be computed as follows:

∂F

∂Um
=

N∑
i=1

Imi

[
g′(fmi)

N∑
j=1

Imjβmijg(fm(j−i))Vi

+ g(fmi)

N∑
j=1

Imjβmijg
′(fm(j−i))(Vj − Vi)

]
− λUm

(10)

∂F

∂Vi
=Imi

[
g′(fmi)

N∑
j=1

Imjβmijg(fm(j−i))

+

N∑
j=1

Imj(βmjig(fmj)− βmijg(fmi))g
′(fm(j−i))

]
Um

− λVi (11)

The derivation of the gradient in Eq. (10) is rather straight-
forward. However, the derivation of Eq. (11) is more sophis-
ticated, since the latent factors of different items are cou-
pled. For this reason, we leave its complete derivation in
Appendix B.

The complexity of computing the gradient in Eq. (10)
is O(DS2

m + D), where Sm denotes the number of items
rated/graded by user m. Taking into account all the M
users, the complexity of computing gradients in Eq. (10) in

one iteration can be denoted as O(DS
2
M +DM), in which

S is the average number of rated items across all the users.
Similarly, for a given user m, the complexity of computing
the gradient in Eq. (11) is O(DS2

m+DSm), and the complex-

ity in one iteration over all the users is O(DS
2
M +DSM).

Note that since we have the conditions |Y | = SM and
|Y | >> M,S,D, the overall complexity of GAPfm in one
iteration can be regarded as |Y |, which is linear to the num-
ber of observed ratings in the given dataset.

In addition, as can be observed, for a fixed set of latent
factors V , updating the latent factors of userm as in Eq. (10)
can be conducted independently of updates of all the other
users. Therefore, in each iteration, the optimization of U for
individual users can be done in parallel. As a result, the time
complexity of updating U in practice can even be a constant,
which is determined by the computing facilities (i.e., number
of processors), while not bounded by the scale of |Y |. In
Section 5, we will experimentally show the exploitation of
parallel computing for GAPfm and the resulting benefit.

However, as shown in Eq. (11), the latent factors of one
item, e.g., item i, is coupled with the latent factors of some
other items. Therefore, the advantages of using parallel com-
puting for updating U cannot be transferred to the update of
V . Although the linear complexity with respect to the scale
of the given dataset |Y | is already a crucial advantage for the
scalability of GAPfm, we shall still investigate possibilities
to further reduce the computational complexity, especially
for the cases when the data is of extremely large scale.

4.3 Adaptive Selection
The key idea we propose to reduce the complexity of up-

dating V is to adaptively select a fixed number (K) of items
for each user in each iteration and only update their latent
factors. The criterion of adaptive selection is to select the
K most “misranked” (or disordered) items for each user in
each iteration. We present the theoretical support for this
technique in Appendix C. For example, if user m has three

ALGORITHM 1: Fast Learning: AdaptiveSelection

Input: Graded items by user m, i.e.,
Nm = {ymi > 0, i = 1, 2, . . . , N}, latent factors Um and
V , and the number of selected items K.

Output: Selected item set for user m: Tm.

if
∑N

i=1 Imi ≤ K then
Tm = Nm;
break ;

end
Compute r as a vector representing the ranks of items in Nm

according to the descending order of ymi;
Compute r̂ as a vector representing the ranks of items in Nm

according to the descending order of 〈Um, Vi〉;
dist = abs(r − r̂); % a vector of absolute error between r and r̂
Sort elements of dist in descending order;
Set idx as the indexes of top K elements in dist;
Tm = Nm[idx];

ALGORITHM 2: GAPfm

Input: Training set Y , the number of items for adaptive
selection K, regularization parameter λ, learning rate γ,
and the maximal number of iterations itermax.

Output: The learned latent factors U and V .
for m = 1, 2, . . . ,M do

% Index graded items from each user;
Nm = {i|ymi > 0, i = 1, 2, . . . , N};

Initialize U(0) and V (0) with random values, and t = 0;
repeat

% Updating U in parallel;
for m = 1, 2, . . . ,M do

U
(t+1)
m = U

(t)
m + γ ∂F

∂U
(t)
m

based on Eq. (10);

% Updating V ;
for m = 1, 2, . . . ,M do

Tm = AdaptiveSelection(Nm, U
(t)
m , V (t),K);

for i ∈ Tm do

V
(t+1)
i = V

(t)
i + γ ∂F

∂V
(t)
i

based on Eq. (11);

t = t+ 1;

until t ≥ itermax;

U = U(t), V = V (t);

rated items with ratings 2, 4, 5 (i.e., the rank of the third
item is 1), and the predicted relevance scores (i.e., fmi) af-
ter an iteration are 0.3, 0.5, 0.1 (i.e., the rank of the third
item is predicted to be 3), then the third item is the most
“misranked” one, which (assuming K is set to 1) will be se-
lected for updating its latent factors in the next iteration.
Essentially, the K items are adaptively selected representing
the worst offending items with respect to the loss function.
The optimization of the latent factors of these selected items
yields the highest benefit in terms of optimizing GAP. We
summarize the adaptive selection strategy in Algorithm 1.

Note that with a fixed K, the complexity of updating V
in one iteration is O(DK2M + DKM). As a result, using
C = KM (note that C >> D,K), the overall complexity
of GAPfm is in the magnitude of O(C), which is a constant
being independent of the scale of |Y |. In Section 5, we will
experimentally validate the complexity of GAPfm and the
usefulness of the adaptive selection strategy. Summarizing,
the entire learning algorithm of GAPfm is illustrated in Al-
gorithm 2.

4.4 Discussion
In addition to the aforementioned learning algorithm of

GAPfm and its complexity analysis, we further discuss two
characteristics of GAP that provide more insight into the
usefulness of GAPfm.

First, since GAP can be regarded as a generalization of
AP to multi-grade data [26], GAPfm can be also seen as a
generalization of [28], a CF approach that directly optimizes
AP in the implicit feedback domain. This can also be seen
by looking at the smoothed version of GAP in Eq. (8), for
the case of ymax = 1. For better readability, we leave the
detailed proof in Appendix D. This characteristic indicates
that although GAPfm is specifically designed for the rec-
ommendation domains with graded relevance data, it can
also be utilized for the optimization of AP in the domains
with implicit feedback data , as it becomes equivalent (for
ymax = 1) to the approach proposed in [28].

Second, since GAP is an approximation to the area un-
der the graded precision-recall curve as illustrated in [26],
GAPfm can also be extended to the optimization of graded
precision (GP) and graded recall (GR) at the top-N part
of the recommendation list, as shown in Appendix D. Note
that similar to GAPfm, we can first approximate GP@n and
GR@n by smoothed functions of latent factors, and then
learn the latent factor models in the same fashion as ap-
proached in GAPfm (c.f. Section 4.2 and 4.3). This charac-
teristic of GAPfm is important for real-world applications,
since GAPfm can be simply adapted in real-world systems
and tuned to achieve high recall or precision at certain posi-
tion of users’ recommendation lists. We also note that, be-
yond the scope of the current paper, our approach could also
be applied for optimizing another recently proposed evalua-
tion metric, expected reciprocal rank [6]. Here, we keep our
focus on the optimization of GAP, and on understanding the
properties of GAPfm and evaluating its performance.

5. EXPERIMENTAL EVALUATION
In this section we present a series of experiments to eval-

uate the proposed GAPfm algorithm. We first give a de-
tailed description of the dataset and setup that is used in
the experiments. Then, we validate several properties of
GAPfm, as mentioned in Section 4. Finally, we compare the
recommendation performance between GAPfm and several
state-of-the-art alternative approaches.

We design the experiments in order to address the follow-
ing research questions: 1) Is GAPfm effective for optimizing
GAP? 2) Is GAPfm scalable for large-scale use cases? 3)
Does GAPfm outperform state-of-the-art CF approaches for
top-N recommendation?

5.1 Experimental Setup

5.1.1 Dataset
The Netflix Prize dataset is one of the most used graded

relevance dataset for CF2. Two parts of the dataset are used,
i.e., the training set and the probe set. The training set
consists of ca. 99M ratings (integers scaled from 1 to 5) from
ca. 480K users to 17.7K movies. The probe set contains ca.
1.4M ratings disjoint from the training set. The training set
is used for building recommendation models, and the probe
set is used for the evaluation. In the experiments, we exclude
the users with less than 50 ratings from the training set.
This choice is made to guarantee that users have sufficient

2http://en.wikipedia.org/wiki/Netflix Prize

Table 1: Statistics of the training set in the experiments.
users # movies # ratings Sparseness
319275 17770 95085018 98.32%

number of ratings so as to facilitate our investigation on
different cases in terms of the number of ratings per user.
This also allows us to analyze the complexity of GAPfm, as
discussed in Section 4.3. Note that this exclusion criterion
removes one third of users, without dramatically reducing
the size of the dataset, i.e., it only results in an reduction of
4% of the number of ratings. The statistics of the training
set are summarized in Table 1.

5.1.2 Experimental Protocol
We randomly select a certain number of rated movies and

their ratings for each user in the training set to form a train-
ing data fold. For example, under the condition of “Given
10”, we randomly select 10 rated movies for each user in or-
der to generate a training data fold, from which the ratings
are then used as the input data to train the recommenda-
tion models. In the experiments we investigate a variety
of “Given” conditions, i.e., 10, 20, 30, and 50. Based on
the learned recommendation models, recommendation lists
can be generated for each user, and the performance can be
measured according to the ground truth in the probe set.
Note, that the probe set was originally designed for the pur-
pose of measuring the accuracy of rating prediction in the
Netflix Prize competition. However, it is not guaranteed
that for any user the performance of a recommendation list
is measurable. For example, it is infeasible to measure the
performance of a ranked list if a user has only one rating in a
probe set. For this reason, in our experiments we choose to
measure the recommendation performance only based on the
ground truth of the users who have at least 5 rated movies
in the probe set (ca. 14% users in the probe set). Note
that the choice of 5 is set to allow all the evaluation metrics
(as introduced later in this section) to achieve the highest
possible value 1 for the task of top-5 recommendation.

In addition to GAP, two additional evaluation metrics
are used in the experiments to measure the recommenda-
tion performance, i.e., NDCG and Precision. As mentioned
in Section 1, NDCG is a well-known evaluation metric for
measuring the performance of ranked results with graded
relevance. Precision is a traditional evaluation measure that
reflects the ratio of relevant items in the ranked list given
a truncated position. A relevance threshold of determin-
ing relevant items is necessary when precision is applied to
the graded relevance scenarios. We set the relevance thresh-
old to be 5 (the highest rating value in the dataset), when
measuring the precision of the recommendation list. This
choice is also supported by literature on recommender sys-
tems evaluation [8].

Since in recommender systems the user’s satisfaction is
dominated by only a few items on the top of the recommen-
dation list, our evaluation in the following experiments fo-
cuses on the performance of the top-5 recommended items,
i.e., GAP@5, NDCG@5 and P@5 (averaged across all the
test users) are used to measure the recommendation per-
formance. Note that in the evaluation we cannot treat all
the unrated items/movies as irrelevant to a given user. A
widely-used practical strategy, [8, 18, 28], is to first ran-
domly select 1000 unrated items (which are assumed to be
irrelevant to the user) in addition to the ground truth (i.e.,

Figure 1: The Effectiveness of GAPfm.

rated items) for each user in the probe set, and then evaluate
the performance of the recommendation list that consists of
only the selected unrated items and the ground truth items.
This evaluation strategy is also adopted here.

We randomly select 1.5% (a similar size to the probe set)
of the data in the training set to generate a validation set,
which is used to determine parameters that are involved in
GAPfm and baseline approaches and also to investigate the
properties of GAPfm as presented in the next section.

Parameter setting.
We set the dimensionality of latent factors to be 10 for

both GAPfm and other baseline approaches based on latent
factor models. The remaining parameters are empirically
tuned so as to yield the best performance in the valida-
tion set, i.e., for GAPfm we set the regularization parameter
λ=0.001 and the learning rate γ=10−5.

Implementation.
We implement the proposed GAPfm in Matlab using its

parallel computing toolbox, and run the experiments on a
single PC with Intel Core-i7 (8 cores) 2.3GHz CPU and 8G
RAM memory. For the purpose of reproducibility, we make
our implementation code of GAPfm publicly available (link
blinded for review).

5.2 Validation: Effectiveness
In the first experiment we investigate the effectiveness

of GAPfm, i.e., whether learning latent factors based on
GAPfm contributes to the improvement of GAP. We use
the training set under the conditions “Given 10”, “Given 20”
and “Given 30”, respectively, to train the latent factors, U
and V , which are then used to generate recommendation
lists for individual users. The performance of GAP is mea-
sured according the hold-out data in the validation set along
the iterations of the learning algorithm as described in Sec-
tion 4. The results are shown in Fig. 1, which demonstrates
that GAP gradually improves along the iterations and at-
tains convergence after a certain number of iterations. For
example, under the condition of “Given 10”, it converges af-
ter 60 iterations, while it converges with less iterations as
more data from the users is available for training. Accord-
ing to the observation from this experiment, we can confirm
a positive answer to our first research question.

5.3 Validation: Scalability
We conduct three experiments to validate the scalability

of GAPfm. In the first experiment we empirically investigate

Figure 2: The runtime of updating U in parallel in the

learning algorithm of GAPfm.

the benefits that we can draw from employing parallel com-
puting for updating latent user factors in GAPfm. We then
validate the overall complexity of GAPfm as theoretically
analyzed in Section 4.2. The last experiment is conducted
to investigate the impact of the proposed adaptive selection
strategy, as discussed in Section 4.3.

5.3.1 Parallel Updating of Latent User Factors
As shown in Section 4.2, the update of latent user fac-

tors U in GAPfm can be conducted in parallel. By uti-
lizing multiple cores/processors of the computing machine
for the experiments, we empirically investigate the average
runtime for updating U per iteration against the number of
processors employed. Note that updating U in parallel has
no influence on the quality of the resulting latent factors,
and thus, the performance of the recommendation lists is
not influenced. As shown in Fig. 2, for each of the “Given”
conditions, the runtime of updating U in the learning al-
gorithm is reduced remarkably when increasing the number
of processors for parallelizing the learning process. Note
that the reduction of runtime for updating U is not exactly
inversely-proportionate to the number of processors, due to
the system process maintenance constraints. However, the
experiments are sufficient to demonstrate that paralleliza-
tion can be used to speedup the optimization of the latent
user factors in GAPfm, given adequate computing facilities.

5.3.2 Linear Complexity
Since the size of the data used for training the latent fac-

tors in GAPfm varies under different “Given” conditions, we
can empirically measure the complexity of GAPfm by ob-
serving the computational time consumed at each condition.
In Fig. 3, the average iteration time is shown, which grows
nearly linearly as the number of ratings used for training
increases. This result validates the scalability of GAPfm
under the basic setting, i.e., it scales linearly to the amount
of observed data in the training dataset.

5.3.3 Impact of Adaptive Selection
In order to investigate the impact of the adaptive selec-

tion strategy for GAPfm, we design an experiment under the
condition of “Given 50” to measure the computational cost
for the cases where different numbers of items, i.e., different
values for K (varying from 5 to 50), are adaptively selected
during iterations for each user for training GAPfm. Mean-

Figure 3: The relationship of the average iteration time

against the size of data for training GAPfm.

while, we measure the performance of GAP based on the
hold-out data in the validation set, corresponding to each
case of K.

The results are shown in Fig. 4. Note that increasing K
is equivalent to increasing the size of the data for training
GAPfm. Thus, as shown in the previous experiment, the av-
erage iteration time increases almost linearly to the growth
of K. However, we do observe that GAPfm already achieves
relatively high GAP even with a small value of K, compared
to the GAP achieved when the latent factors of all the items
(i.e., K = 50) are updated. For instance, when only 20
items are adaptively selected for updating their latent fac-
tors in each iteration of the learning algorithm, i.e., K = 20,
nearly 75% of the runtime can be saved, compared to the
case of updating the latent factors of all the items. Mean-
while, the drop of GAP is only around 5%, i.e., the GAP is
0.206 when K = 20, and 0.216 when K = 50. For large-scale
datasets where computational cost is crucial, the small per-
formance hit introduced by the adaptive selection process
pays off due to the large gain attained in terms of compu-
tational cost. As analyzed in Section 4.3, we can practically
maintain a constant complexity of GAPfm by using adap-
tive selection with a fixed K. In next section, we will further
demonstrate the performance of GAPfm with adaptive se-
lection in the case of K = 20. Finally, we also conducted an
experiment for validating the utility of adaptive selection,
compared to random selection, i.e., in the case of K = 20
we randomly select 20 rated items for updating their latent
factors in each iteration of GAPfm. Random selection for
K = 20 produced a value of GAP = 0.166, which is 19%
lower than computed using adaptive selection. In total, the
experimental results confirm the value of the proposed adap-
tive selection for GAPfm in terms of both recommendation
performance and the computational cost.

Summarizing, the observations from the experiments pre-
sented above allow us to give a positive answer to our second
research question, i.e., GAPfm can be highly scalable (with
constant complexity independent of the scale of the given
dataset) and used for large-scale datasets.

5.4 Performance on Top-N Recommendation
We compare the performance of GAPfm with three base-

line approaches. Each of the baseline approaches is listed
and briefly introduced below:

• PopRec is a naive and non-personalized baseline that
recommends movies in terms of their popularity, i.e.,
the number of ratings from all the users. Note that

Table 2: Performance comparison of GAPfm and the baseline approaches on the Netflix dataset.
Given 10 Given 20 Given 30

P@5 NDCG@5 GAP@5 P@5 NDCG@5 GAP@5 P@5 NDCG@5 GAP@5
PopRec 0.023 0.080 0.165 0.024 0.084 0.171 0.026 0.085 0.176
SVD++ 0.023 0.065 0.133 0.027 0.071 0.139 0.032 0.087 0.168
CofiRank 0.027 0.093 0.181 0.027 0.088 0.182 0.025 0.088 0.186
GAPfm 0.040 0.109 0.195 0.042 0.111 0.207 0.042 0.114 0.213

Figure 4: The impact of value K on both the computa-

tional cost and the performance of GAP.

another naive baseline based on the average rating of
movies was also tested, but it achieved rather low per-
formance compared to other baselines. For this rea-
son, we excluded it from our experimental results re-
ported in this paper. Although being a naive baseline,
PopRec is shown in literature to have competitive per-
formance for the top-N recommendation task on the
Netflix dataset [8].

• SVD++ is a state-of-the-art CF approach, which is
shown to be superior for the rating prediction task as
witnessed in the Netflix Prize contest [18]. We use the
implementation of SVD++ available in GraphLab3 [23].
Note that the dimensionality of latent factors used in
SVD++ is set to 10, the same as the setting for the
proposed GAPfm. Other parameters, such as the reg-
ularization parameter, are tuned according to the ob-
servation from the validation set.

• CofiRank is a state-of-the-art CF approach that specif-
ically optimizes for the ranking performance of recom-
mendation results [36]. In addition, to the best of our
knowledge, CofiRank is also the only well-established
CF approach that directly optimizes NDCG measure
for graded relevance datasets. Note that the imple-
mentation of CofiRank is based on the publicly avail-
able software package from the authors4. The dimen-
sionality of latent factors is also set to 10, and the
remaining parameters are tuned on the validation set.

In Table 2, we present the performance of GAPfm and the
baseline approaches for “Given” 10 to 30 items per user in
the training set. Under all three conditions, GAPfm largely
outperforms all the baselines, i.e., over 30% in P@5, 15% in
NDCG@5 and 10% in GAP@5. All the improvements are
statistically significant, according to Wilcoxon signed rank
significance test with p<0.01. The results indicate that the
proposed GAPfm is highly competitive for the top-N recom-

3http://graphlab.org/toolkits/collaborative-filtering/
4http://www.cofirank.org/

Table 3: Performance of GAPfm with adaptive selec-

tion (K = 20) on the Netflix dataset under the condition

“Given 50”
P@5 NDCG@5 GAP@5

PopRec 0.025 0.085 0.172
SVD++ 0.031 0.080 0.150
CofiRank 0.023 0.084 0.188
GAPfm 0.044 0.122 0.219

GAPfm+Adaptive Selection 0.044 0.115 0.201

mendation task. We also demonstrate that the optimization
of GAP leads to improvements in terms of precision and
NDCG. We also notice that SVD++ is only slightly better
than PopRec in P@5 (which was also observed in related
work of [8]), but worse than PopRec in both NDCG@5 and
GAP@5. This result again indicates that optimizing rating
predictions do not necessarily lead to good performance for
top-N recommendations.

In Table 3, we show the performance of GAPfm with adap-
tive selection for “Given 50” items per user in the training
set, which simulates the case of relatively large user pro-
files. As indicated in Section 5.3, we adopt K = 20 for the
adaptive selection in GAPfm. GAPfm still achieves a large
improvement over all of the baselines across all the metrics,
and also slightly outperforms GAPfm with adaptive selec-
tion, i.e., ca. 6% in NDCG@5 and ca. 8% in GAP@5. How-
ever, we observe that GAPfm with adaptive selection still
improves over PopRec, SVD++ and CofiRank to a signifi-
cant extent. Moreover, as mentioned before, under the con-
dition of“Given 50”, training GAPfm with adaptive selection
at K = 20 saves around 75% computation time. Therefore,
the drop in recommendation performance can be considered
to be acceptable for real-world applications.

5.5 Performance on Ranking Graded Items
The last experiment is conducted to examine the per-

formance of GAPfm on the task of ranking a given list of
rated/graded items. We compare GAPfm with other collab-
orative ranking approaches proposed in the literature. Note
that our focus on this paper is on top-N recommendation,
which differs essentially from the ranking of rated items. In
this setting we do not sample unrated items but only focus
on the correct ranking of the rated items. However, this
experiment only serves to verify that GAPfm would be still
competitive even in the case of evaluating the ranking of
rated items. For this reason, we extend our experiment on a
different dataset, i.e., the MovieLens 100K dataset5 [12], and
compare the performance of GAPfm with a state-of-the-art
approach, Win-Loss-Tie (WLT) feature-based collaborative
ranking [33], which is, to our knowledge, the latest contri-
bution to collaborative ranking. We follow exactly the same
experimental protocol as used in the work of [33], to allow
us to make a straightforward comparison with the results
reported in their work. The results are shown in Table 4.
We observe that GAPfm achieves competitive performance

5http://www.grouplens.org/node/73

Table 4: NDCG performance of GAPfm compared to WLT on the MovieLens 100K dataset
Given 10 Given 20 Given 30 Given 40

@1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5
WLT 0.710 0.683 0.680 0.703 0.695 0.692 0.714 0.712 0.710 0.741 0.719 0.715

GAPfm 0.709 0.692 0.683 0.717 0.691 0.695 0.722 0.709 0.708 0.736 0.712 0.704

for ranking rated items, across all the conditions and NDCG
at all the truncation levels. These results indicate that the
optimization of GAP for top-N recommendation would nat-
urally lead to improvements in terms ranking graded items.

In summary, according to our observations from Section 5.4
and 5.5, we can conclude a positive answer to our last re-
search question.

6. CONCLUSIONS AND FUTURE WORK
We have presented GAPfm, a new CF approach for top-

N recommendation, by learning a latent factor model that
directly optimizes GAP. We propose an adaptive selection
strategy for GAPfm so that it could attain a constant com-
putational complexity, which guarantees its usefulness for
large scale use scenarios. Our experiments also empirically
validate the scalability of GAPfm. GAPfm is demonstrated
to substantially outperform the baseline approaches for the
top-N recommendation task, while also being competitive
for the performance of ranking graded items, compared to
the state of the art.

There are a few directions for future work. First, inspired
by statistical analysis of evaluation metrics [35], we would
like to analyze the relations and differences between learning
methods that optimize different evaluation metrics. Second,
we are also interested in developing distributed version of
the proposed GAPfm, by taking into account recent con-
tributions of distributed latent factor models [10]. Third,
considering the multi-facet relevance judgments in recom-
mender systems, such as accuracy, diversity, serendipity, we
would also like to investigate the possibilities of optimizing
top-N recommendation with multiple cohesive or competing
objectives [3, 16, 30].

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Transactions on Kowledge and
Data Engineering, 17(6):734–749, 2005.

[2] D. Agarwal and B.-C. Chen. Regression-based latent factor
models. KDD ’09, pages 19–28. ACM, 2009.

[3] D. Agarwal, B.-C. Chen, P. Elango, and X. Wang. Personalized
click shaping through lagrangian duality for online
recommendation. SIGIR ’12, pages 485–494. ACM, 2012.

[4] S. Balakrishnan and S. Chopra. Collaborative ranking. WSDM
’12, pages 143–152. ACM, 2012.

[5] C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to rank with
nonsmooth cost functions. NIPS ’06, pages 193–200, 2006.

[6] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected
reciprocal rank for graded relevance. In Proceedings of the 18th
ACM conference on Information and knowledge management,
CIKM ’09, pages 621–630, New York, NY, USA, 2009. ACM.

[7] O. Chapelle and M. Wu. Gradient descent optimization of
smoothed information retrieval metrics. Inf. Retr., 13:216–235,
June 2010.

[8] P. Cremonesi, Y. Koren, and R. Turrin. Performance of
recommender algorithms on top-n recommendation tasks.
RecSys ’10, pages 39–46. ACM, 2010.

[9] M. D. Ekstrand, J. T. Riedl, and J. A. Konstan. Collaborative
filtering recommender systems. Foundations and Trends in
Human-Computer Interaction, 4(2):81–173, 2011.

[10] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis.
Large-scale matrix factorization with distributed stochastic
gradient descent. KDD ’11, pages 69–77. ACM, 2011.

[11] A. Gunawardana and G. Shani. A survey of accuracy
evaluation metrics of recommendation tasks. J. Mach. Learn.
Res., 10:2935–2962, December 2009.

[12] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative filtering.
SIGIR ’99, pages 230–237. ACM, 1999.

[13] T. Hofmann. Latent semantic models for collaborative filtering.
ACM Trans. Inf. Syst., 22:89–115, January 2004.

[14] L. Hong, R. Bekkerman, J. Adler, and B. D. Davison. Learning
to rank social update streams. SIGIR ’12, pages 651–660. ACM,
2012.

[15] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. ICDM ’08, pages 263–272. IEEE
Computer Society, 2008.

[16] T. Jambor and J. Wang. Optimizing multiple objectives in
collaborative filtering. RecSys ’10, pages 55–62. ACM, 2010.

[17] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, Oct. 2002.

[18] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. KDD ’08, pages
426–434. ACM, 2008.

[19] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42:30–37,
August 2009.

[20] N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented approach
to collaborative filtering. SIGIR ’08, pages 83–90. ACM, 2008.

[21] N. N. Liu, M. Zhao, and Q. Yang. Probabilistic latent
preference analysis for collaborative filtering. CIKM ’09, pages
759–766. ACM, 2009.

[22] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[23] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Distributed graphlab: A framework for
machine learning in the cloud. PVLDB, 5(8):716–727, 2012.

[24] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
information retrieval. Cambridge Univ. Press, Cambridge
[u.a.], 1. publ. edition, 2008.

[25] S. Rendle, C. Freudenthaler, Z. Gantner, and S.-T. Lars. Bpr:
Bayesian personalized ranking from implicit feedback. UAI ’09,
pages 452–461. AUAI Press, 2009.

[26] S. E. Robertson, E. Kanoulas, and E. Yilmaz. Extending
average precision to graded relevance judgments. SIGIR ’10,
pages 603–610. ACM, 2010.

[27] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based
collaborative filtering recommendation algorithms. WWW ’01,
pages 285–295. ACM, 2001.

[28] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic,
and N. Oliver. TFMAP: optimizing map for top-n
context-aware recommendation. SIGIR ’12, pages 155–164.
ACM, 2012.

[29] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver,
and A. Hanjalic. CLiMF: learning to maximize reciprocal rank
with collaborative less-is-more filtering. RecSys ’12, pages
139–146. ACM, 2012.

[30] K. M. Svore, M. N. Volkovs, and C. J. Burges. Learning to rank
with multiple objective functions. WWW ’11, pages 367–376.
ACM, 2011.

[31] M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank:
optimizing non-smooth rank metrics. WSDM ’08, pages 77–86.
ACM, 2008.

[32] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent
output variables. J. Mach. Learn. Res., 6:1453–1484, 2005.

[33] M. N. Volkovs and R. S. Zemel. Collaborative ranking with 17
parameters. NIPS ’12, 2012.

[34] E. M. Voorhees. The trec-8 question answering track report. In
TREC-8, 1999.

[35] J. Wang and J. Zhu. On statistical analysis and optimization of
information retrieval effectiveness metrics. SIGIR ’10, pages
226–233. ACM, 2010.

[36] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. Cofirank -
maximum margin matrix factorization for collaborative
ranking. NIPS’07, pages 1593–1600, 2007.

[37] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. SIGIR ’07, pages 391–398. ACM, 2007.

[38] J. Xu, T.-Y. Liu, M. Lu, H. Li, and W.-Y. Ma. Directly
optimizing evaluation measures in learning to rank. SIGIR ’08,
pages 107–114. ACM, 2008.

[39] S.-H. Yang, B. Long, A. J. Smola, H. Zha, and Z. Zheng.
Collaborative competitive filtering: learning recommender using
context of user choice. SIGIR ’11, pages 295–304. ACM, 2011.

[40] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support
vector method for optimizing average precision. SIGIR ’07,
pages 271–278. ACM, 2007.

APPENDIX
A. VALIDATION OF EQ. (7)

Note that we neglect the user index m in the following, due to its
irrelevance to this validation. Given relevance predictions on all the
items, i.e., fi, i = 1, 2, . . . , N , the definition of the rank of item i,
i.e., Ri, can be formulated as below:

Ri = 1 +
N∑

j=1

I(fi < fj)

Suppose that f is continuous and bounded within [a, b]. We can ap-
proximate Ri by a smooth function of f as below:

Ri ≈ 1 +

N∑
j=1

efj−fi

eb
= 1 +

e−fi

eb

N∑
j=1

e
fj

In the case N is large (which is common for most recommendation
domains), we could further approximate the summation by integra-
tion over all the possible values of f . Under this approximation, we
obtain:

Ri ≈ 1 +
e−fi

eb

∫ b

a

e
f
df = 1 +

e−fi

eb
(e

b − ea)

= 1 + (1− e−(b−a)
)e
−fi

Note that it is reasonable to assume b − a >> 0, since theoretically
b could be positive infinite and a could be negative infinite (if latent
factors are drawn from real values). Therefore, we can finally obtain:

Ri ≈ 1 + e
−fi

which validates the approximation in Eq. (7), i.e., 1/Ri = g(fi).

B. DERIVATION OF EQ. (11)
Note that we drop the derivative of the regularization term, i.e.,

−λVi in the following.

∂F

∂Vi

= Imig
′
(fmi)Um

N∑
j=1

Imjβmijg(fm(j−i))

+ Imig(fmi)

N∑
j=1,j 6=i

Imjβmijg
′
(fm(j−i))(−Um)

+

N∑
k=1,k 6=i

Imkg(fmk)Imiβmkig
′
(fm(i−k))Um

Replacing k with j in the last summation term, and applying the
property g′(−x) = g′(x) so as to combine the last two summation
terms, we obtain:

∂F

∂Vi

= Imig
′
(fmi)Um

N∑
j=1

Imjβmijg(fm(j−i))

+ Um

N∑
j=1,j 6=i

ImiImj

(
βmjig(fmj)− βmijg(fmi)

)
g
′
(fm(j−i))

Note that βmjig(fmj) − βmijg(fmi) = 0 if i = j. We can add this

condition into above and take out Imi and Um to attain Eq. (11).

C. ADAPTIVE SELECTION
We present our justification of the criterion for adaptive selection

proposed in Section 4.3. Note that in the following, we drop the user
index m, due to its irrelevance to this validation. By the definition
of the indicator function I, we have I(yi < yj) + I(yj ≤ yi) = 1.
Therefore, we can rewrite Eq. (4) as:

βij : =
(
1− I(yj ≤ yi)

) yi∑
l=1

δl + I(yj ≤ yi)
yj∑
l=1

δl

=

yi∑
l=1

δl +
(yj∑

l=1

δl −
yi∑
l=1

δl
)
I(yj ≤ yi)

Substituting above equation into Eq. (2), we obtain:

GAP =
N∑

i=1

Ii
∑yi

l=1 δl

Ri

N∑
j=1

IjI(Rj ≤ Ri)

+
N∑

i=1

Ii

Ri

N∑
j=1

IjI(Rj ≤ Ri)I(yj ≤ yi)
(yj∑

l=1

δl −
yi∑
l=1

δl
)

Note that the first summation is non-negative. Also note that when

Rj ≤ Ri and yj ≤ yi (i.e., two items are misranked), we have∑yj
l=1 δl −

∑yi
l=1 δl ≤ 0. Therefore, the second summation is com-

posed by non-positive terms, i.e., only leading to a loss of GAP. In

addition, the loss is proportionate to
∑yj

l=1 δl−
∑yi

l=1 δl, the difference

of grades of misranked items. Thus, it is obvious that the largest loss

would be casued by the most misranked item, justifying our criterion

for adaptive selection, i.e., updating most misranked items would lead

to largest upgrade of GAP.

D. CHARACTERISTICS OF GAPFM
Generalization. In the scenario with implicit feedback data (bi-

nary relevance data), we have ymax = 1. Thus, in the case of Imi > 0
and Imj > 0, it implies that we have ymi = ymj = ymax = 1. Substi-
tuting this condition into Eq. (4) and taking into account of the defi-
nition of in Eq. (5), we obtain βmij = 1. Furthermore, the smoothed
GAP as in Eq. (8) returns to:

GAPm =

N∑
i=1

Imig(fmi)

N∑
j=1

Imjg(fm(j−i))

which is equivalent to the smoothed AP (excluding the context vari-
able and the constant coefficient) as proposed in the work of [28].
Therefore, the proposed GAPfm is a generalization of the approach
optimizing AP in the implicit feedback domains.

Specialization. Graded precision and graded recall are two spe-
cialized metrics that can be decomposed from GAP. As defined in [26],
we can rewrite GP@n and GR@n for the top-n recommendation list
of user m as follows:

GPm@n =
1

n

N∑
i=1

ImiI(Rmi ≤ n)ξ
(n)
mi

GRm@n =
1

Zm

N∑
i=1

Imi

ymi∑
l=1

δlI(Rmi ≤ n)

where,

ξ
(n)
mi :=

I(ymi < cmn)
∑ymi

l=1 δl + I(cmn ≤ ymi)
∑cmn

l=1 δl∑cmn
j=1 δl

cmn denotes the grade of the nth item in the user m’s ranked list,
according the descending order of her rated items. We may attain
smoothed versions of GP@n and GR@n by approximating I(Rmi ≤ n)
with smoothed functions of latent factors U and V , such as

I(Rmi ≤ n) ≈ g(〈Um, Vi〉 − cmn)

Then, similar optimization as used in GAPfm can be performed to

learned latent factors that optimize GP@n or GR@n.

	1 Introduction
	2 Related work
	3 Notation and Terminology
	4 GAPfm
	4.1 Smoothed Graded Average Precision
	4.2 Optimization
	4.3 Adaptive Selection
	4.4 Discussion

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.1.1 Dataset
	5.1.2 Experimental Protocol

	5.2 Validation: Effectiveness
	5.3 Validation: Scalability
	5.3.1 Parallel Updating of Latent User Factors
	5.3.2 Linear Complexity
	5.3.3 Impact of Adaptive Selection

	5.4 Performance on Top-N Recommendation
	5.5 Performance on Ranking Graded Items

	6 Conclusions and future work
	7 References
	A Validation of Eq. (7)
	B Derivation of Eq. (11)
	C Adaptive Selection
	D Characteristics of GAPfm

